

Expanding the SPAdes Toolbox

Anton Korobeynikov

Center for Algorithmic Biotechnology
St. Petersburg State University, St. Petersburg, Russia
http://bioinf.spbau.ru/spades

SPAdes (Saint Petersburg Assembler)

SPAdes

- Originally designed as single-cell assembler
- Can deal with highly uneven coverage and MDA-imposed chimeric reads
- Turned out to work well for multi-cell isolate assemblies
- One of two best assemblers in GAGE-B study by Salzberg's lab (Magoc et al., Bioinf., 2013)
- The best bacterial genome assembler in the recent poll by <u>acgt.me</u>

SPAdes 3.5

- Improved memory consumption at the repeat resolution step (more than 2x)
- Integrated support for Lucigen NxSeq Long Mate Pair libraries
- Rewritten mismatch correction module
- Support for Oxford Nanopore reads for hybrid assemblies

Illumina + Nanopore Hybrid Assemblies

	Illumina only	llmn + Nanopore	
Contigs > 500 bp	92	1	
Largest Contig	285414	4649811	
Total Length	4649811	4654532	
Reference Length	4639675	4639675	
NG50	133088	4649811	
NG75	64475	4649811	
Misassemblies*	0 (0)	6 (0)*	
Genome fraction (%)	98.14	99.99	

Illimina 2x100 bp E. coli K12 reads are available from http://bioinf.spbau.ru/spades Nanopore reads from Nick Loman

^{*} Misassemblies are not real, this is the difference wrt the reference

SPAdes 3.6

BayesHammer improvements:

- Removed 2³² k-mer limit (bigger genomes!)
- Reduced memory consumption (2x-4x)
- Much faster (e.g. $36h \rightarrow 8h$)
- Completely rewritten read correction procedure: faster and more precise

SPAdes improvements:

Significantly reworked repeat resolution and scaffolding module

SPAdes Toolbox

- Developed from the beginning as a set of modular and reusable parts
- Different "stages" of an assembler can be stacked together and share common information
- Allows one to assemble an assembler-like application from different building blocks

SPAdes Toolbox

- Developed from the beginning as a set of modular and reusable parts
- Different "stages" of an assembler can be stacked together and share common information
- Allows one to assemble an assembler-like application from different building blocks

And so we did!

dipSPAdes

The first de Bruijn graph assembler designed for highly polymorphic diploid genomes:

Fungus heterozygosity up to 20%

Sea squirts heterozygosity up to 12%

Plants avg heterozygosity 7%

Insects avg heterozygosity 9%

dipSPAdes constructs consensus for diploid haplomes and takes advantage of structure of de Bruijn graph for diploid genome to construct longer contigs

Yana Safonova, Anton Bankevich, Pavel A. Pevzner. dipSPAdes: an assembler for highly polymorphic diploid genomes. J. of Comp. Biol., 2015

Illumina TruSeq

Illumina TruSeq

Why SPAdes?

Complex repeat structure inherited from target genome

Interstrand chimeric connections

Fragmentation of barcode span

Uneven coverage

truSPAdes

- SPAdes turned into assembler for pooled barcode data
- Tuning and refinements for TSLR data
- Accurate re-analysis of resulting contigs (virtual long reads) in order to reduce misassemblies

truSPAdes

	Illumina assembler	Ray	SPAdes	truSPAdes	Ideal
#contigs, pb*	419	414	677	430	≈300
#contigs (>8000 bp), pb	106	83	108	126	≈300
Total length (Mb), pb	2.2	1.8	2.7	2.3	≈3
N50	7 579	6 222	6 235	8 250	≈10 000
NGA50	5 235	2 511	4 770	6 551	≈10 000
#N's per 100 Kbp	0.9	3083	242	0.3	0
Misassemblies, pb	1.8	7	47	3.1	0
Mismatches per 100 Kbp	75	84	190	100	0

Human TSLR dataset

^{*}pb - per barcode: average among all barcodes in dataset

metaSPAdes

Coverage of single-cell *E. coli* sample

Genome assembly of species with extremely different abundances is similar to assembly of MDA data

This is what SPAdes was designed for!

metaSPAdes

SRX024329 (HMP data) Nx plot

RNA-Seq assembly

- Trinity (Grabherr et al., Nat. Biotech., 2011)
- Oases (Schulz et al., Bioinf., 2012)

Who needs yet another RNA-Seq assembler?

RNA-Seq assembly

- Trinity (Grabherr et al., Nat. Biotech., 2011)
- Oases (Schulz et al., Bioinf., 2012)
- IDBA-tran (Peng et al., Bioinf., 2014)
- IDBA-MTP (Peng et al., RECOMB 2014)
- SOAPdenovo-Trans (Xie et al., Bioinf., 2014)
- StringTie (Pertea et al., Nat. Biotech., 2015)
-

Means there is a space for improving *de novo* transcriptome assemblers

How does a *single-cell genome* assembler perform on a transcriptome dataset?

How does a *single-cell genome* assembler perform on a transcriptome dataset?

Quite well:

	IDBA-tran	SOAPdenovoTrans	Trinity	SPAdes
Transcripts	2872	2725	2171	3339
N50	312	213	309	370
Aligned	2845	2693	2150	3230
Unaligned	27	32	21	109
Avg. mismatches per transcript	0.447	0.456	0.341	0.57
Total annotation coverage	0.075	0.052	0.058	0.1
Partially-assembled isoforms (>30%)	886	582	713	1119
Fully-assembled isoforms (>90%)	96	53	91	234
Partially-annotated transcripts (>30%)	2611	2493	2009	2967
Fully-annotated transcripts (>90%)	1436	1449	1108	1553

From SPAdes to rnaSPAdes

From SPAdes to rnaSPAdes

rnaQUAST

- One cannot develop an assembler without having an assembly quality assessment tool
- Based on our experience with SPAdes and QUAST, developing such a tool is not an easy task
- Parallel development of rnaSPAdes and rnaQUAST is crucial for the success of both tools
- rnaQUAST is tool for analysing assembled transcripts using various metrics (via the reference genome and / or genome annotation)

rnaSPAdes

	IDBA-tran	SOAPdenovoTrans	Trinity	SPAdes	rnaSPAdes
Transcripts	2872	2725	2171	3339	6954
N50	312	213	309	370	303
Aligned	2845	2693	2150	3230	6692
Unaligned	27	32	21	109	262
Avg. mismatches per transcript	0.447	0.456	0.341	0.57	0.35
Total annotation coverage	0.075	0.052	0.058	0.1	0.105
Partially-assembled isoforms (>30%)	886	582	713	1119	1135
Fully-assembled isoforms (>90%)	96	53	91	234	188
Partially-annotated transcripts (>30%)	2611	2493	2009	2967	6138
Fully-annotated transcripts (>90%)	1436	1449	1108	1553	4094

Yeast RNA-Seq dataset

When?

- SPAdes 3.6: end June
- dipSPAdes: included into SPAdes
- rnaSPAdes: beta mid June, EAP
- truSPAdes: beta mid summer
- metaSPAdes: beta end summer

Acknowledgement

SPAdes team:

Dmitry Antipov

Anton Bankevich

Elena Bushmanova

Alexey Gurevich

Dmitry Meleshko

Sergey Nurk

Andrei Przhibelski

Yana Safonova

Alla Lapidus

Pavel Pevzner

This work was supported by the Russian Science Foundation (grant #14-50-00069)

Thank you!

http://bioinf.spbau.ru/spades